From d16216758065f8a39c32d6b3ff983ce92b80e98d Mon Sep 17 00:00:00 2001
From: Cotes Chung <11371340+cotes2020@users.noreply.github.com>
Date: Tue, 9 Mar 2021 15:50:08 +0800
Subject: [PATCH] Support TeX and LaTeX math delimiters (#243)
---
_includes/js-selector.html | 21 +++++++++++++++++++--
_posts/2019-08-08-text-and-typography.md | 2 +-
2 files changed, 20 insertions(+), 3 deletions(-)
diff --git a/_includes/js-selector.html b/_includes/js-selector.html
index 8f7d4ea..8b03add 100644
--- a/_includes/js-selector.html
+++ b/_includes/js-selector.html
@@ -23,8 +23,25 @@
{% if page.math %}
-
-
+
+
+
{% endif %}
{% if jekyll.environment == 'production' %}
diff --git a/_posts/2019-08-08-text-and-typography.md b/_posts/2019-08-08-text-and-typography.md
index edba338..fa267ea 100644
--- a/_posts/2019-08-08-text-and-typography.md
+++ b/_posts/2019-08-08-text-and-typography.md
@@ -147,7 +147,7 @@ The mathematics powered by [**MathJax**](https://www.mathjax.org/):
$$ \sum_{n=1}^\infty 1/n^2 = \frac{\pi^2}{6} $$
-When \\(a \ne 0\\), there are two solutions to \\(ax^2 + bx + c = 0\\) and they are
+When $a \ne 0$, there are two solutions to $ax^2 + bx + c = 0$ and they are
$$ x = {-b \pm \sqrt{b^2-4ac} \over 2a} $$