From d16216758065f8a39c32d6b3ff983ce92b80e98d Mon Sep 17 00:00:00 2001 From: Cotes Chung <11371340+cotes2020@users.noreply.github.com> Date: Tue, 9 Mar 2021 15:50:08 +0800 Subject: [PATCH] Support TeX and LaTeX math delimiters (#243) --- _includes/js-selector.html | 21 +++++++++++++++++++-- _posts/2019-08-08-text-and-typography.md | 2 +- 2 files changed, 20 insertions(+), 3 deletions(-) diff --git a/_includes/js-selector.html b/_includes/js-selector.html index 8f7d4ea..8b03add 100644 --- a/_includes/js-selector.html +++ b/_includes/js-selector.html @@ -23,8 +23,25 @@ {% if page.math %} - - + + + {% endif %} {% if jekyll.environment == 'production' %} diff --git a/_posts/2019-08-08-text-and-typography.md b/_posts/2019-08-08-text-and-typography.md index edba338..fa267ea 100644 --- a/_posts/2019-08-08-text-and-typography.md +++ b/_posts/2019-08-08-text-and-typography.md @@ -147,7 +147,7 @@ The mathematics powered by [**MathJax**](https://www.mathjax.org/): $$ \sum_{n=1}^\infty 1/n^2 = \frac{\pi^2}{6} $$ -When \\(a \ne 0\\), there are two solutions to \\(ax^2 + bx + c = 0\\) and they are +When $a \ne 0$, there are two solutions to $ax^2 + bx + c = 0$ and they are $$ x = {-b \pm \sqrt{b^2-4ac} \over 2a} $$